

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 7043-7047

Tetrahedron Letters

A novel glycosidation of glycosyl fluoride using a designed ionic liquid and its effect on the stereoselectivity

Kaname Sasaki, Shuichi Matsumura and Kazunobu Toshima*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

> Received 29 June 2004; revised 26 July 2004; accepted 28 July 2004 Available online 13 August 2004

Abstract—The glycosidations of glucopyranosyl fluoride and alcohols using an ionic liquid containing a protic acid effectively proceeded under mild conditions to afford the corresponding glycosides in good to high yields. The stereoselectivity of the glycosidation was significantly affected by the ionic liquid solvent. 1-*n*-Hexyl-3-methylimidazolium trifluoromethanesulfonate (C₆mim[OTf]), containing a trifluoromethanesulfonate anion, and 1-(3-cyanopropyl)-3-methylimidazolium trifluoromethanesulfonimidide (CNC₃mim[NTf₂]), possessing a cyano group at the side chain of the imidazolium cation, gave the β -stereoselectivity. © 2004 Elsevier Ltd. All rights reserved.

The development of a practical and environmentally benign glycosidation, which is one of the most important and fundamental transformation reactions of carbohydrates, is now becoming more and more important, and urgently needed both in the laboratory and in industry.¹ The greening of chemistry² in the field of glycosidation reactions may include the use of an environmentally benign catalyst and solvent, both of which could be reused. Recently, ionic liquids have been described as one of the most promising environmentally benign reaction media.³ In this context, we previously reported the glycosidation of glucopyranosyl phosphite using an ionic liquid containing a protic acid,⁴ and the glycosidations of glycals and glycosyl trichloroacetimidates in ionic liquids were independently reported by Yadav et al.⁵ and Poletti et al.,⁶ respectively. In these studies, the recyclability of the ionic liquids as greener solvents for the glycosidation reactions was well demonstrated. Another more promising feature of ionic liquid is its designability. Through our previous study, we have expected that stereoselectivity of glycosidation would be strongly influenced by ionic liquid as a solvent because many glycosidation reactions involve a cationic species, namely, an oxonium intermediate, which could interact

with an anion species. Therefore, if an oxonium intermediate could interact with an anion species contained in ionic liquid, stereoselective glycosidation induced by ionic liquid would be achieved. Although Poletti et al. showed that the stereoselectivity of a glycosidation using a glycosyl trichloroacetimidate was changed by the ionic liquid,⁶ a systematic study related to the effect of the ionic liquid on the stereoselectivity of the glycosidation reaction has never been reported. Herein, we report the stereoselective glycosidation of glycosyl fluoride and alcohols controlled by a designed ionic liquid and its effect on the stereoselectivity (Fig. 1).

In this study, we selected a glycosyl fluoride⁷ as the glycosyl donor because glycosyl fluoride is effectively activated by both Lewis and protic acids.⁸ For the reaction solvent, we chose several ionic substances, which are liquids at room temperature, 25 °C, having a low viscosity, and have the ability to dissolve the glycosyl donor and several glycosyl acceptors as shown in Figure 1. Thus, we first examined the glycosidations of the glucopyranosyl fluoride 1β ($\alpha/\beta = 1/>20$) and cyclohexylmethanol (2) (2.0 equiv to 1) using several ionic liquids (0.1 M for 1β) containing a protic acid (3 mol%) to ionic liquid (IL)) possessing a common anion with the ionic liquid, such as 1-n-hexyl-3-methylimidazolium tetrafluoroborate (C₆mim[BF₄]) with HBF₄, 1-n-hexyl-3-methylimidazolium trifluoromethanesulfonimidide (C₆mim[NTf₂]) with HNTf₂, 1-*n*-hexyl-3-methylimidazolium perchlorate (C₆mim[ClO₄]) with HClO₄ and

Keywords: Carbohydrate; Glycosidation; Glycosyl fluoride; Ionic liquid; Designability.

^{*} Corresponding author. Tel./fax: +81 45 566 1576; e-mail: toshima@ applc.keio.ac.jp

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.07.128

Figure 1. Glycosidations of glycosyl fluoride and alcohols using an acid–ionic liquid.

1-n-hexyl-3-methylimidazolium trifluoromethanesulfonate (C_6 mim[OTf]) with HOTf at 25 °C. These results are summarized in Table 1. Although the glycosidation of 1 using C₆mim[BF₄] with HBF₄ needed a long reaction time and gave a moderate yield of the corresponding glycoside 8 (Table 1, entry 1), other glycosidations proceeded very smoothly to afford 8 in good to high yields (Table 1, entries 2-4). These results clearly indicated, for the first time, that the glycosyl fluoride was effectively activated by an acid-ionic liquid, namely, an ionic liquid containing a protic acid, and coupled with an alcohol. It was noteworthy that the stereoselectivity of the glycosidation was highly dependent on the catalyst-solvent system. Among the examined acidionic liquids, C₆mim[NTf₂] containing HNTf₂ provided the α -stereoselectivity with good yield (Table 1, entry 2), while $C_6 \min[OTf]$ with HOTf afforded the highest β stereoselectivity with high yield (Table 1, entry 4). It was also confirmed that although the reactivity of 1β was higher than that of the corresponding α -anomer 1α ($\alpha/\beta = >20/1$), the stereoselectivity of the glycosidation using 1β was quite similar to that using 1α (Table 1, entry 4 vs 5). These results clearly showed that the stereoselectivity of the glycosidation is highly independent of the configuration at the anomeric center of the glycosyl donor **1**, and this reaction proceeded via the S_N1 type pathway and involved a cationic species, that is, an oxonium intermediate. Furthermore, since no epimerization of the generated glycosidic bond occurred during the glycosidation reaction, the stereoselectivity of the glycosidation was due to kinetic control. Therefore, the α -stereoselectivity observed using $C_6 mim[NTf_2]$ containing HNTf₂ must result from the anomeric effect, while the β -stereoselectivity shown using $C_6 mim[ClO_4]$ with HClO₄ or $C_6 mim[OTf]$ with HOTf must arise from the α -oriented coordination of the perchlorate or trifluoromethanesulfonate anion with the oxonium intermediate.⁹

At this stage, we had a question as to which anion is a real factor to induce the unusual β -stereoselectivity without neighboring group participation, the anion from the ionic liquid or from the protic acid. To answer this question, we next examined the glycosidations of **1** and **2** using C₆mim[NTf₂] with HOTf and C₆mim[OTf] with HNTf₂, both of which contained a protic acid possessing a different anion from the ionic liquid (Table 1, entries 6 and 7). Comparing these results with those using

Table 1. Glycosidations of 1 and 2 in ionic liquids containing protic acids

	BnO BnO	OBRF + HO	Protic acid (3 mol%) Ionic liquid (0.1 M 25 °C	for 1) BnO BnO BnO		
	100	or 1β 2 (2.0 equ	uiv.)		8	
Entry	Donor	Ionic liquid	Protic acid	Time/h	Yield/% ^a	α/β Ratio ^b
1	1β	C ₆ mim[BF ₄]	HBF_4	24	41	47/53
2	1β	$C_6 mim[NTf_2]$	HNTf ₂	1	86	68/32
3	1β	$C_6 mim[ClO_4]$	HClO ₄	1	83	30/70
4	1β	C ₆ mim[OTf]	HOTf	1	89	24/76
5	1α	C ₆ mim[OTf]	HOTf	4	85	26/74
6	1β	$C_6 mim[NTf_2]$	HOTf	1	82	52/48
7	1β	C ₆ mim[OTf]	HNTf ₂	1	88	25/75

^a Isolated yields after purification by column chromatography.

^b α/β Ratios were determined by HPLC analysis (column, CrestPak C18S[®], 4.6 × 150 mm; eluent, 10% H₂O in MeCN; flow rate, 1.0 mL/min, 40 °C; detection, UV 250 nm).

 $C_6 mim[NTf_2]$ with HNTf₂ and $C_6 mim[OTf]$ with HOTf, it was made clear that the β -stereoselectivity was observed only when $C_6 mim[OTf]$ was used as the solvent. These results demonstrated that the stereoselectivity of the glycosidation was highly dependent on the ionic liquid, not the protic acid, and the β -stereoselectivity was induced by the α -coordination of the trifluoromethanesulfonate anion from the ionic liquid, $C_6 mim[OTf]$, with the oxonium intermediate.

With these new results in hand, we next attempted the glycosidation reaction at a lower temperature to further improve the β -stereoselectivity, because the α -triflate intermediate must be held more tightly at lower temperatures. However, C₆mim[OTf] itself is unfortunately a solid salt at 0°C. Although 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (C₂mim[OTf]), which possesses a shorter alkyl chain, has a lower melting point, it is much more hydroscopic than C₆mim[OTf]. Indeed, the chemical yield of the glycosidation of 1 and 2 using C₂mim[OTf] was lower than that employing C₆mim[OTf]. Therefore, the use of a mixture of C₆mim[OTf] and C₆mim[NTf₂] was attempted. From the results summarized in Table 2, it was found that although a longer reaction time (24h) was required at 0°C to obtain the high yield of the corresponding glycoside, the β -stereoselectivity increased as expected (Table 2, entries 7–12). Furthermore, the β -stereoselectivity gradually increased as the ratio of C₆mim[OTf] in the mixed ionic liquid increased. The same tendency was also observed at 25°C (Table 2, entries 1-6). These results also showed that the trifluoromethanesulfonate anion competed with the trifluoromethanesulfonimide anion for the coordination with the oxonium cation generated from the glycosyl donor, and the β -stereoselectivity of the present glycosidation was induced by the trifluoromethanesulfonate anion from the ionic liquid, C_6 mim[OTf]. Since the 8:2 (mol/mol) mixture of C_6 mim[OTf] and C_6 mim[NTf₂] became a solid (Table 2, entries 11 and 12), the highest β -stereoselectivity was obtained when the 7:3 (mol/mol) mixture was employed at 0°C (Table 2, entry 10). Thus, the glycosidation of 1

and **2** in a 7:3 (mol/mol) mixture of C₆mim[OTf] and C₆mim[NTf₂] at 0°C for 24 h gave the glycoside **8** in high yield (91%) with good β -stereoselectivity ($\alpha/\beta = 18/82$).

Knowing these preferable results, we next carried out the glycosidations of **1** and several alcohols **3**–7 including the sugar derivatives to examine the scope and limitations of the present glycosidation. These results are outlined in Table 3. It was found that other primary alcohols **3** and **4** were effectively coupled with **1**, as well as **2**, to afford the corresponding glycosides in high yields with good β -stereoselectivities (Table 3, entries 1–3). When the reactions were performed using the secondary alcohols **5** and **6**, satisfactory chemical yields and stereoselectivities were obtained at the higher temperature of 25 °C in C₆mim[OTf] as the sole solvent (Table 3, entries 4 and 5). Unfortunately, the low reactive secondary alcohol **7**, however, gave a poor result under similar reaction conditions (Table 3).

Our attention was next turned to the modification of the side chain of the imidazolium cation moiety of the ionic liquid, C₆mim[NTf₂]. Therefore, we newly designed and synthesized 1-(2-ethoxyethyl)-3-methylimidazolium trifluoromethanesulfonimidide (EtOC₂mim[NTf₂]) possessing an ether function and 1-(3-cyanopropyl)-3-methylimidazolium trifluoromethanesulfonimidide (CNC₃mim[NTf₂]) containing a cyano group.¹⁰ The results of the glycosidations of 1 and 2 using a protic acid, HNTf₂, in these novel ionic liquids are described in Figure 2. When EtOC₂mim[NTf₂] was used as the solvent, unfortunately, no stereoselectivity was observed. However, in the case of $CNC_3mim[NTf_2]$, β stereoselectivity was induced. The chemical yield and stereoselectivity were very similar to those using C₆mim[OTf] under similar conditions. Compared the result when using $C_6 \min[NTf_2]$, the cyano group in CNC₃mim[NTf₂] significantly influenced the stereoselectivity of the glycosidation. These results strongly suggested that the cyano group¹¹ in the side chain of the imidazolium cation coordinated with the oxonium

BnO-

Table 2.	Glycosidations	of 1	and	2 in	mixed	ionic	liquids
		BnC)				

	$\frac{BnO}{BnO} + HO + $	Br E Dinic liquid 1 for 1 β)	BINO OBIN	$\widehat{}$	
Entry	Ratio of mixed ionic liquid (C ₆ mim[NTf ₂]/C ₆ mim[OTf])	25°C, 1h (Entries 1-6)		0°C, 24h (Entries 7-12)	
		Yield/% ^b	α/β Ratio ^c	Yield/% ^b	α/β Ratio ^c
1, 7	10/0	82	52/48	81	52/48
2, 8	7/3	90	39/61	90	24/76
3, 9	5/5	89	30/70	89	21/79
4, 10	3/7	89	27/73	91	18/82
5, 11 ^a	2/8	93	25/75	_	
6, 12 ^a	0/10	89	24/76		

HOTf (3 mol% to IL)

^a Isolated yields after purification by column chromatography.

^bα/β Ratios were determined by HPLC analysis (column, CrestPak C18S[®], 4.6 × 150 mm; eluent, 10% H₂O in MeCN; flow rate, 1.0 mL/min, 40 °C; detection, UV 250 nm).

^c The used ionic liquid is solid state at 0 °C.

Table 3. Glycosidations of 1 and several alcohols 2-7

	BnO BnO BnO	$ \begin{array}{c} 0 \\ \hline 0 \\ OBn \end{array} \begin{array}{c} F \\ \mathbf{F} \\ \mathbf{F} \\ \mathbf{F} \\ \mathbf{F} \\ \mathbf{C} \\ \mathbf{C}$	DTf (3 mol% to IL) 	0 0 0 0 0 0 8-13	
Entry	Alcohol	Conditions ^a	Product	Yield/% ^b	α/β Ratio ^c
1	2	А	8	91	18/82
2	3	А	9	95	20/80
3	4	А	10	99	13/87
4	5	В	11	91	29/71
5	6	В	12	77	28/72
6	7	В	13	54	42/58

^a Conditions A: C₆mim[OTf]/C₆mim[NTf₂] = 7/3, 0°C, 24h. Conditions B: C₆mim[OTf], 25°C, 1h.

^b Isolated yields after purification by column chromatography.

^c α/β Ratios were determined by HPLC analysis (column, CrestPak C18S[®], 4.6×150 nm; eluent, 10% H₂O in MeCN for entries 1, 2, and 4–6, 12.5% H₂O in MeCN for entry 3; flow rate, 1.0mL/min, 40°C; detection, UV 250 nm).

Figure 2. Glycosidations of 1β and 2 using EtOC₂mim[NTf₂] and CNC₃mim[NTf₂].

intermediate more effectively than trifluoromethanesulfonimide anion. These results also indicated that the interaction between the oxonium intermediate and trifluoromethanesulfonimide anion was very weak and did not affect the stereoselectivity of the glycosidation.

In conclusion, we presented novel glycosidations of glucopyranosyl fluoride and alcohols using an ionic liquid containing a protic acid. Furthermore, although the stereoselectivity is still not very high, the effect of the ionic liquids on the stereoselectivity of the glycosidation was clearly demonstrated. These results should be instructive for further research that employs ionic liquids in stereoselective and environmentally benign glycosidation reactions. Further studies along this line are currently in progress.

Acknowledgements

This research was supported in part by Grant-in-Aid for the 21st Century COE program 'KEIO Life Conjugate Chemistry' from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References and notes

 (a) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212; (b) Sina, P. Pure. Appl. Chem. 1991, 63, 519; (c) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503; (d) Boons, B. G. Tetrahedron **1996**, *52*, 1095; (e) Davis, B. G. J. Chem. Soc., Perkin. Trans. 1 **2000**, 2137.

- Green Chemistry: Theory and Practice; Anastas, P. T., Warner, J. C., Eds.; Oxford University Press: Great Britain, 1998.
- (a) Welton, T. Chem. Rev. 1999, 99, 2071; (b) Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772; (c) Sheldon, R. Chem. Commun. 2001, 2399; (d) Ionic Liquid in Synthesis; Wasserscheid, P., Welton, T., Eds.; Wiley-VCH: Weinheim, 2002.
- 4. Sasaki, K.; Nagai, H.; Matsumura, S.; Toshima, K. *Tetrahedron Lett.* 2003, 44, 5605.
- Yadav, J. S.; Reddy, B. V. S.; Reddy, J. S. S. J. Chem. Soc., Perkin Trans. 1 2002, 2390.
- Poletti, L.; Rencurosi, A.; Lay, L.; Russo, G. Synlett 2003, 2297.
- For reviews on glycosyl fluoride, see: (a) Shimizu, M.; Togo, H.; Yokoyama, M. Synthesis 1998, 799; (b) Toshima, K. Carbohydr. Res. 2000, 327, 15.
- For glycosidations of glycosyl fluoride using protic acid, see: (a) Toshima, K.; Kasumi, K.; Matsumura, S. Synlett 1998, 643; (b) Toshima, K.; Kasumi, K.; Matsumura, S. Synlett 1999, 813–815; (c) Mukaiyama, T.; Jona, H.; Takeuchi, K. Chem. Lett. 2000, 696; (d) Jona, H.; Takeuchi, K.; Mukaiyama, T. Chem. Lett. 2000, 1278; (e) Jona, H.; Mandai, H.; Mukaiyama, T. Chem. Lett. 2001, 426.
- 9. Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 4506.
- 10. The synthesis of newly designed ionic liquids will be reported elsewhere. CNC₃mim[NTf₂]: ¹H NMR (300 MHz, neat): δ 8.46 (1H, s, N–CH=N), 7.39 (1H, s, CH=C), 7.33 (1H, s, CH=C), 4.20 (2H, t, $J_{1,2} = 5.7$ Hz, N–CH₂), 3.81 (3H, s, N–CH₃), 2.43 (2H, t, $J_{2,3} = 5.7$ Hz, CH₂–CN), 2.17 (2H, tt, $J_{1,2} = J_{2,3} = 5.7$ Hz, CH₂); ¹³C

NMR (75 MHz, neat): δ 136.48, 124.22, 122.47, 120.21 (q, $J_{C,F} = 318.7 \text{ Hz}$), 119.33, 48.38, 36.05, 25.78, 13.81. EtOC₂mim[NTf₂]: ¹H NMR (300 MHz, neat): δ 7.68 (1H, s, N–CH=N), 6.60 (1H, s, CH=C), 6.51 (1H, s, CH=C), 3.43 (2H, t, $J_{1,2} = 4.2 \text{ Hz}$, N–CH₂), 3.02 (3H, s, N–CH₃), 2.87 (2H, t, $J_{1,2} = 4.2 \text{ Hz}$, CH₂–CH₂–O), 2.60

(2H, q, $J_{4,5} = 6.9$ Hz, CH_2 – CH_3), 0.21 (3H, q, $J_{4,5} = 6.9$ Hz, CH_2 – CH_3); ¹³C NMR (75 MHz, neat): δ 136.44, 123.26, 122.90, 119.90 (q, $J_{C,F} = 318.5$ Hz), 67.54, 66.18, 49.70, 35.66, 14.07.

11. Hashimoto, S.; Hayashi, M.; Noyori, R. *Tetrahedron Lett.* 1984, 25, 1379.